
CTL 决议

标准 (包含: 年份)	条款	编号	年份
IEC 62368-1:2018 ed.3.0 IEC 60664-1:2020 类别	附录0	2214	2023
ITAV			
主题	关键词	制定	批准年份
爬电距离和电气间隙的测量	爬电距离 电气间隙	ETF2	2023或2024 年CTL全体会 议

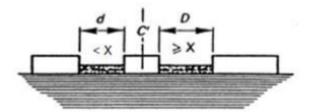
问题

Condition: Insulation distance with intervening, unconnected conductive part.

Rule Clearance is the distance d+D, creepage distance is also d+D. Where the value of d or D is smaller than X mm it shall be considered as zero.

Figure 0.4 - Intervening unconnected conductive part

如上图所示,在IEC62368-1;2014 ed. 2.0 附录O中图O.4解释如下:


规则: 电气间隙就是d + D, 爬电距离也是d + D。如果d或D的数值小于X mm,则该数值应认为是零。

在IEC 62368-1:2018 ed.3.0附录O中,图O.4也是相同表述。

虽然,IEC 60664-1: 2007 和 IEC 60664-1:2020 中,在 IEC60664-1:2007 这个版本中没有表述 关于d或D的数值小于X mm的情况。

但是,如下所示,DSH 2160阐明了这一困境,您可以看到决议屏幕截图:

A PCB sample is tested according to sub-clause 6.2 of IEC 60664-1:2007. How to measure creepage distances when the path is split by floating conductive parts when $d \le X$ and $D \ge X$?

NOTE: d < X, D ≥ X, C is conductive floating part Figure test PCB sample

Different interpretations of total creepage distance are as follows:

Opinion 1: The creepage distance is measured as shown in IEC 60664-1:2007 example 11. Creepage distance is the distance = d + D.

Opinion 2: Since the d is less than X, the d is considered as zero. Creepage distance is the distance = D.

Which opinion is correct?

Decision

Opinion 1 is correct. Creepage distance is the distance = d + D.

问题:根据IEC62368-1对于未连接的导电零部件(悬浮导体),应怎样评估电气间隙和爬电距离?

决议

参考 DSH2160。

注释

IEC62368- 1 ed4 中 108 /800/FDIS 草案中图 O.4 有所更改,与 IEC60664-1 的决议 DSH2160 一致。 2022 年 11 月 IEC TC108 HBSDT 旧金山:与 OSM EE 文件 22/5 的内容达成一致意见。